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Introduction:

In 1993, members of our team collaborated with Silicon Graphics to perform the first full-scale
demonstration of the computational power of the SMP cluster supercomputer architecture [1].  That
demonstration involved the simulation of homogeneous, compressible turbulence on a uniform grid of a
billion cells, using our PPM gas dynamics code [2-5].  This computation was “embarrassingly parallel,”
the ideal test case, and it achieved only 4.9 Gflop/s performance, slightly over half that achievable by this
application on the most expensive supercomputers of that day.  After four to five solid days of
computation, when the prototype machine had to be dismantled, the simulation was only about 20%
completed.  Nevertheless, this computation gave us important new insights into compressible turbulence
[6,7] and also into a powerful new mode of cost-effective, commercially sustainable supercomputing [8].
In the intervening 6 years, the SMP cluster architecture has become a fundamental strategy for several
large supercomputer centers in the U.S., including the DoE’s ASCI centers at Los Alamos National
Laboratory and at the Lawrence Livermore National Laboratory and the NSF’s center NCSA at the
University of Illinois.  This SMP cluster architecture now underlies product offerings at the high-end of
performance from SGI, IBM, and HP, among others.  Nevertheless, despite many successes, it is our
opinion that the computational science community is only now beginning to exploit the full promise of
these new computing platforms.  In this paper, we will briefly discuss two key architectural issues, vector
computing and the flat multiprocessor architecture, which continue to drive spirited discussions among
computational scientists, and then we will describe the hierarchical shared memory programming
paradigm that we feel is best suited to the creative use of SMP cluster systems.  Finally, we will give
examples of recent large-scale simulations carried out by our team on these kinds of systems and point
toward the still more challenging work which we foresee in the near future.

Vector or Scalar Computation on a Single CPU?

Computational scientists and numerical algorithm specialists still argue over the benefits of vector
versus scalar computation on a single CPU.  These disagreements are reflected in hardware offerings as
well, but in the U.S., mainstream microprocessor manufacturers are designing CPUs principally with the
goal of rapid execution of scalar code.  These CPUs acknowledge certain mainstream commercial
applications, such as signal processing and compression/decompression of multimedia data streams as
well as interactive 3-D graphics for CAD applications, Hollywood movies, and, more importantly,
computer games, that vectorize in a natural way.  However, these specialized vector applications do not
require high floating point precision.  These processors therefore support short, low-precision vector
operations, but the usefulness of this hardware functionality for scientific computing applications familiar
from the heyday of vector supercomputers in the U.S. (in the 1980’s) is unclear.

In the realm of scientific computation, the vector versus scalar argument hinges on the fact that
vector code, if a useful algorithm can be formulated in this way, relatively easily achieves half the peak
potential CPU performance.  For specialized linear algebra applications, vector code can come close to
the peak potential of the CPU.  The problem is that not every useful algorithm can be formulated in terms
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of code that is overwhelmingly of a vector nature.  Once scatter-gather instructions enter the mix,
performance tends to plummet (although this performance degradation is algorithm dependent).
Additionally, the most favored applications, the dot products involved in linear algebra, perform at peak
rates on CPUs of either type, whether vector or scalar.  In the U.S., this vector versus scalar issue is being
driven by powerful commercial forces beyond the control of even the wealthiest scientific communities.
Apparently, outside of science there are not very many applications written in vector format (save of
course the signal processing and graphics applications already noted).  This situation is ameliorated by the
fact that modern RISC CPU design is fundamentally based upon pipelining, the core technology behind
vector computing.

The pipelined RISC CPU architecture assures that, so long as a scalar code presents to the CPU a
sufficient frequency of executable flops within its instruction and data streams, performance should come
close to that of vector code.  Achieving near vector performance on scalar code apparently requires lots of
registers, out of order instruction execution, speculative execution after branches, and the like − all
standard tricks of today’s highly sophisticated microprocessors.  Assuming that the CPU has enough
registers to keep temporary results within a moment’s access range, and assuming that it also has a large,
fast cache memory to draw upon, multiple iterations of a loop body, or even more general multiple
threads, can be executed simultaneously in order to present within the combined instruction stream
enough executable flops to keep functional units busy.  In the 1970’s, when vector computing was first
introduced, vector performance was to be compared to that of relatively unsophisticated scalar processors
without the benefit of cache memories (unless we consider the small core memory of the CDC 7600 as a
cache).  With such unsophisticated competition, vectors were a clear win.  Today, however, the competi-
tion makes for a much closer call.  The comparison is also algorithm dependent, as the older among us
will remember that it was in the 1970’s.  The reason for this algorithm dependence is the fact that in order
to force computation into a vectorizable mode it is usually necessary to perform unnecessary arithmetic.
For the PPM gas dynamics codes we use, vectorization requires between 50% to 100% additional
arithmetic, even for an ideal, embarrassingly parallel fluid dynamics problem [8,9].

Over the last few years, the scientific computing community has become familiar with the program
structure requirements of cache-based microprocessors.  In general, one needs to “block” numerical
algorithms, so that a great deal of work is performed on a contiguous subset of the overall data while it
resides in the cache memory.  This is not the natural structure of a vector program, since it tends to result
in relatively short vector lengths.  However, it is the means of reducing demands on the bandwidth of the
memory that is shared among the multiple processors in any of today’s powerful computing systems.  As
more and more scientific computing applications are converted to such blocked numerical algorithms, it
becomes harder and harder to find compelling examples for the preservation of classic vector computing.
This conversion is not now complete, but it is progressing rapidly, at least in the United States.  A
conversion that is less rapid is one to truly scalar algorithms that no longer attempt to find compromise
numerical treatments to make, for example, grid cells with shocks look mathematically like grid cells
without them, or grid cells with multiple fluids look in some sense like single-fluid cells.  Once one
decides that it is no longer necessary to maintain a code that will run well on vector computers, the far
more potentially accurate and powerful numerical algorithms that are truly scalar become available for
consideration.  This potential trove of powerful new algorithms is becoming practical just as super-
computing systems are attaining true, sustained teraflop/s computational capability, permitting the far
more complex physical simulations that can best make use of the new algorithms.

Flat MPP Architecture or Cluster of SMPs?

A second architectural issue capable of driving earnest and extended arguments within the scientific
computing community today is the one of CPU equality or CPU hierarchy.  The first multiprocessor
machines had so few CPUs that it was pointless to arrange them hierarchically.  In the 2-, 4-, 8-, and 16-
processor vector machines of the 1980’s and early 1990’s in the U.S., every processor was equal.  This
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architecture of CPU equality was extended in a wide variety of machines known as massively parallel
processors, or MPPs.  Well-known examples from the U.S. industry are the Connection Machines, the
Intel Paragons, the Cray T3Ds and T3Es, and the IBM SP-1.  Even though the programmer might lay out
these processors meaningfully in his or her program to form a 2-D or 3-D torus, for example, the
advertised concept was that the processors were capable of all being treated equally.  None had preferred
access to any memory other than its own local one;  or at least it was supposed to be possible to write an
efficient program assuming that this was so.  This was really a very appealing concept.  However, its
appeal tends to fade as the number of processors increases into the hundreds or thousands and, particular-
ly, as one begins to attack dynamically irregular scientific computing problems on the machine.  Dynamic
load balancing on such MPP platforms with over 500 processors is a rare feat, requiring a programming
tour de force.

The SMP cluster architecture arose from two movements.  First was one of building highly cost
effective microprocessor-based machines along the symmetric multiprocessing lines of the early multi-
processor vector machines.  These new  microprocessor-based machines were not positioned as super-
computers, since their CPUs were much slower than those of the vector machines, and the number of
these processors available in a single machine (up to 36) was small compared to the number available in
MPPs of that day (up to 512 or even 1024).  However, these early machines were relatively low-cost bus-
based SMPs (symmetric multiprocessors), relatively easily programmed, and capable of supporting time-
sharing (as opposed to MPP “space sharing”) through the Unix operating system.  These advantages
translated into brisk sales, which placed these machines in the commercial mainstream and thus made
them candidates for clustering.

As these microprocessor based SMPs appeared, many groups were building low cost computing
systems out of clusters of single-processor workstations interconnected by Ethernet or FDDI networks.
Eight or 16 machines in a cluster was a typical configuration.  These low cost systems produced about the
computing capability, for carefully structured application codes using message passing libraries, of a
single vector processor of the day.  None of these systems at that time could compete in capability with,
say, a 16-processor Cray C-90 vector supercomputer.  However, the same programming and network
interconnection techniques could be used to build a cluster of SMPs.  Members of our team worked with
Silicon Graphics (SGI) in 1993 to do just that [1].  We built a cluster of 16 machines, each with 20
processors, interconnected in a 3-D toroidal topology by 20 FDDI rings.  On our PPM code, this system
delivered 4.9 Gflop/s sustained performance.  To our knowledge, this was the first cluster system that
delivered true supercomputer performance.  Using a high-end, mainstream commercial system as the unit
of replication in a cluster was the key to achieving supercomputer performance at relatively low cost,
while still leveraging the software and inexpensive peripherals driven by the commercial market.  Perhaps
ironically, this idea has served the DoE’s ASCI program well in procuring the most expensive and most
capable systems now in use in the U.S.  A simplified version of our PPM code, called sPPM [10], has
been used as the performance benchmark for these ASCI program procurements, and as a result it has
been run in 1998 at 1 Tflop/s sustained performance.

With the weight added in the U.S. by the ASCI program, it would seem that the SMP cluster
architecture has become a clear winner.  However, MPP fans still abound within the scientific computing
community.  We argue below that the true power of SMP cluster computing is the ease that it offers for
dynamic load balancing in highly irregular computations.  This potential still remains to be tapped in most
of the classic areas of computational science.  The exposition below will hopefully serve to inspire
readers to go out and tap it for themselves, and through that effort to cement the gains that this new
supercomputer architecture has by now achieved.

The SMP (or DSM) Cluster Programming Challenge:

Today’s high-end computing platforms from U.S. vendors, DSM and SMP cluster systems, combine
deep memory hierarchies in both latency and bandwidth with a need for many-hundred-fold to several-
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thousand-fold parallelism.  Users of these systems have had to meet these challenges to efficient parallel
program design armed only with minimal system software:  Fortran, C, MPI, and support for POSIX
threads on a network node.  OpenMP is a promising new standard which can be used to generate portable
code for a single DSM or SMP machine, but it does not address the cluster as a whole.  Programming for
dedicated cluster systems would be difficult enough, however DSM cluster systems are usually
administered in order to optimize throughput, so that a mix of jobs of different sizes is set running at any
given time.  It is therefore very difficult to obtain for a single large job even an entire 128-processor
machine, let alone a cluster of such machines.  In order to run efficiently in this context, we restructured
our PPM gas dynamics program so that it could dynamically adjust the number of processors it used on
any single DSM machine of the cluster.  This allowed the code to coexist with a time varying mix of other
jobs.  Our code’s task manager continually entered requests into multiple job queues, adding any
processors that were made available through this mechanism to the ongoing team.  So far we have used
this restructured code for problems with a regular structure, adapting to irregular processor loads from
other users.  However, it will be no additional difficulty to have this code dynamically adjust processor
loads as a result of dynamically changing computational loads from regions of our own problem domain.
The techniques that we have used to accomplish this code restructuring are outlined below.  They are very
general and should apply equally well to many other computational problems.

Hierarchical Shared Memory:

Our first versions of our PPM gas dynamics code, like the sPPM benchmark code that we wrote for
the DoE’s ASCI program, used thread-based shared memory multitasking within each DSM machine and
MPI message passing over the DSM cluster.  Not only was this hybrid coding technique clumsy, but it
also made load balancing over the cluster network difficult.  Following ideas presented in [8], our present
approach extends to the entire cluster the shared memory multitasking approach that we use within each
DSM machine.  The key to this kind of parallel program is to decompose the work of the program into a
sequence of tasks each of which requires only data from a restricted and compact data context and each of
which can be executed from this data context without the need to communicate with any other task.  This
is a shared memory paradigm;  tasks do not communicate directly with each other, but instead they read
and write shared memory data structures.  If we wish, we can think of the task’s data context as including
within it “messages” that have been written there by other tasks.  This message passing through the
intermediary of shared memory is, however, much simpler than message passing directly between
ongoing processes.  No message receiver ever need know the identity of the message sender, and vice
versa.  There is also no need for message buffering, since the data structures in shared memory are pre-
allocated.  It is still a good idea, of course, to write data needed by other tasks as soon as this data is
generated and to read data supplied by other tasks at the latest possible moment.  Synchronization of this
form of message passing is therefore still required, although it is generally much simpler.  In our code, we
accomplish this synchronization by having each task set a semaphore variable in shared memory
indicating when the task has been completed.  (To avoid performance degradation due to false sharing,
each semaphore must have its own cache line in memeory.)  Tests on these task completion semaphores
are performed before each task launch, so that a task once begun knows that it is safe to do all its work
without further inquiry.  The art of writing such programs is to order the list of tasks very carefully so that
at any point in the program a very large number of tasks near that point in the sequence can be executing
in parallel.

So far, the strategy of task parallelism outlined above should be familiar.  This is the method for
constructing parallel programs for SMPs.  For DSM machines, there is one further detail.  The non-
uniform memory access of the DSM architecture forces the programmer to take the trouble of copying
into the local memory of the executing processor the elements of the task data context that will be over-
written.  Any intermediate data generated by the task that will not be written into shared memory for other
tasks to read must also be placed in the local memory of the executing processor.  In Fortran, this local
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memory placement is easily accomplished.  The task is merely encapsulated in a subroutine (subroutine
linkage is a negligible cost for any task with a hope of being efficient), and the data that must be local is
dimensioned locally, so that it will be placed by the compiler on the subroutine stack (which is always in
the best possible memory).  This placement of the task work space in local memory eliminates the
phenomenon of “false sharing” and greatly improves performance.  Note that it is unnecessary to know
which processor will execute the task.  The subroutine stack will transparently be put in the right place.

Our program consists of a hierarchical set of task lists.  The first set is a list of tasks intended for
execution by entire machines of the cluster.  These tasks, which we will call DSM tasks, are themselves
composed of lists of smaller tasks, which we will call CPU tasks.  A CPU task is encapsulated in a
subroutine and is written for execution by a single CPU.  DSM tasks are encapsulated in subroutines that
are explicitly multithreaded for parallel execution.  We make each task conform to a template consisting
of three steps:  (1) reading the task data context into the local, private task work space,  (2) operating on
the data context,  and (3) writing data back into shared data structures.  CPU tasks enjoy relatively large
data bandwidth to the shared memory of their DSM machines, so they may perform these three task
stages sequentially without significant loss of performance.  (Machines that do not support this mode of
task operation are difficult to sell and therefore are difficult to find.)  However, DSM tasks do not enjoy
high bandwidth access to the memory of other cluster members (or to shared disks).  Therefore, steps 1
and 3 above must be overlapped with step 2.  That is, the data for the next DSM task must be prefetched
during the execution of the present DSM task.  Also, the data produced by this DSM task must be written
back to shared data structures during the execution of the next DSM task.  This can be accomplished by
encapsulating these data transfers in separate DSM tasks, with the obvious constraint that they must be
executed by the same DSM that performs the real computational work of the DSM task to which they
correspond.  In our implementation, we have constructed memory server daemons that run on each DSM
machine of the cluster and which asynchronously fulfill requests to “put” and “get” contiguous sections of
arrays registered with them as globally accessible.  We have coordinated the DSM tasks through a task
manager process, which has only a single thread.

Hierarchical Shared Memory Parallel Implementation of PPM at NCSA:

We restructured the PPM gas dynamics code according to the hierarchical shared memory strategy
outlined above.  Memory server daemons were created to read and write a fast Fibre Channel network-
attached disk system of our own design.  Two 128-processor Silicon Graphics Origin-2000 machines at
NCSA, interconnected by a single fast Ethernet, shared a common file system on 48 Seagate Fibre
Channel disks supplied by LCSE industrial partner MTI.  Each machine was connected to all 48 disks via
4 Fibre Channel loops.  Each machine was connected to the disks through its own set of ports (the disks
were dual ported).  Read/write bandwidth from the PPM application from each machine was in excess of
270 MB/s, sustained, even when both machines accessed the disks simultaneously.  Control information,
such as DSM task completion semaphores, was passed via MPI over the fast Ethernet link.

This restructured PPM code was used to simulate Mach 2 homogeneous, compressible turbulence
on a billion-cell (10243) uniform grid.  A typical task for a single CPU was to update for a single 1-D pass
a grid pencil of 4×4×256 cells.  A typical task for a single 128-processor Origin-2000 machine was to
update for six 1-D passes, or 2 time steps, a 256×256×512 brick of grid cells.  The active data context for
the job consisted of 32 old and 32 new grid brick records stored on the 864 GB shared Fibre Channel disk
system.  Each grid brick record of 954 MB consisted of 27 separate records:  the brick interior (640 MB),
6 brick face records (27.5 MB each),  12 brick edge records (2.4 MB each),  and 8 brick corner records
(200 KB each).  The active memory context in each participating DSM machine consisted of 5 grid brick
records, or about 5 GB out of the 64 GB of DSM memory in each machine.

During each grid brick update, the Origin-2000 was asynchronously prefetching the next grid brick
record and writing back the results of the previous grid brick update to 27 different grid brick records on
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disk.  The grid brick record, after being read into DSM memory from disk (in 3.5 sec), was unpacked to
form a single, augmented grid brick of 300×300×556 cells.  This brick was then updated in six 1-D
passes, with each consisting of 8192 single-CPU tasks (requiring 2.5 sec with 128 CPUs).  In this
demonstration run, there were barrier synchronization points at the ends of the 6 passes, but these can be
eliminated at the cost of further code complexity.  After the 6 passes, the new data was written into a new
grid brick record in DSM memory, and this was transferred back to disk (in 3.5 sec).

Figure 1, below, documents about 4 days of continuous PPM computation at NCSA.  Two 128-
processor SGI Origin-2000 systems were used.  Processors obtained by PPM on the first system are
represented by the cream colored area in the figure.  This system was not always available, due to
scheduling of dedicated access for other jobs.  Processors obtained by PPM on the second 128-processor
system are represented by the blue area in the figure.  PPM adjusted its number of processors on each
machine at the beginning of each 1-D sweep for each grid brick.  When 128 CPUs were in use, this
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Figure 1.   The usage of processors on two 128-processor Silicon Graphics Origin-2000
machines at NCSA is shown here over a 4-day period in the fall of 1998.  The light blue and the
tan areas of the diagram represent processors dynamically obtained by our PPM code for use on
a single, billion-cell simulation of homogeneous, compressible turbulence.  The other colors
show processors devoted to other users of these systems.  About half way through this period, one
of the machines was given over to another user for a dedicated run.  For a brief interval, both
machines were unavailable to us.  Brief periods in which processor utilization falls below 100%
were caused by use of the machines by the system operators.  The minimum response time of this
PPM job to changes in resource availability was 2.5 seconds.
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adjustment interval was about 2.5 seconds.  Both machines were shared dynamically with other users, and
PPM benefited by inserting requests for CPUs in several batch queues, grabbing the CPUs as they became
available for this single, large computation.  The small departures from full resource utilization that are
shown reflect system functions performed by the operators, not any failure of PPM to exploit these
opportunities.

Reevaluating this Demonstration Code for Parameters of the IBM SP System:

Our sPPM benchmark code indicates that, within a couple of per cent, the delivered performance of
a PowerPC 604e microprocessor running at 333 MHz is equivalent to that of a MIPS R10K processor
running at 195 MHz.  Therefore, one SMP of 4 such PowerPC CPUs is about 32 times less powerful than
a 128-CPU Origin-2000 for our PPM code.  Hence we should reduce the computational labor involved in
a single DSM task of the PPM code by about a factor of 32 in order to run well on this platform.  We can
do this by reducing the brick volume by a factor of 8,  resulting in a brick of  128×128×256  cells,  and by
performing only a single 1-D sweep rather than 6 per task.  This DSM task should now take  15×32/48 =
10 sec.  Because we are performing only a single 1-D sweep, the data reuse in this task is 6 times less than
on the Origin-2000.  However, the ratio of “cluster” network bandwidth to DSM processing speed is now
4×25/600  =  1/6 Bytes/flop.  This is  12  times greater than for the Origin-2000 at NCSA.  As a result, the
PPM code should run on this system even more efficiently.  However, of course, in this model the entire
problem data context must reside in the relatively expensive system memory rather than on relatively
inexpensive Fibre Channel disks.  A form of overhead for the parallel code is redundant computation
performed in “ghost” cells surrounding each grid brick.  The fraction of the computation time devoted to
this redundant work would have remained the same as in the NCSA run if we had performed three rather
than just one sweep per DSM task.  We have thus reduced the redundant computation overhead by a
factor of     (2782×534 - 2562×512)/(8×(1302×263 - 1282×256)) = 3.9   and the efficiency of the job should
therefore be even greater.  We note that these projections are merely educated guesses, and they do not
incorporate any consideration of problem I/O.  They nevertheless suggest that our parallel programming
model might be portable to systems with fairly dramatically different parameters than the Silicon
Graphics Origin cluster at NCSA.

Reevaluating this Demonstration Code for Parameters of the HP System:

We presently await results of tests that are underway with the cooperation of HP personnel and of
the computing center at Caltech.  These results will be presented at the conference.

Assumptions that Permit Efficient DSM Cluster Programs:

It is tempting to speculate that perhaps all codes aimed at the simulation of physical systems on
grids could be implemented in the above fashion.  As a result, we have attempted to abstract those char-
acteristics of our PPM code that we feel are essential in enabling this restructuring.  We state them here in
the form of assumptions that we believe are necessary for such hierarchical shared memory parallel
program execution.  First, we assume that a job can be decomposed into a set of tasks that can be
executed independently, so long as certain previous tasks are completed at task launch.  We further
assume that each task can be made to conform to a model, or template, in which:

1) possibly remote data is copied into local memory,

2) this data is operated upon mightily,

3) a few results are written back to possibly remote storage.

We assume that the tasks can be constructed so that, in general, the larger the data context for the
task, the larger the amount of potential data reuse.  This assumption is necessary to accommodate low
cluster bandwidths.  To accommodate large cluster latencies we must also assume that the task data
contexts can be constructed so that they may be read or written back in only a small number of sequential
data transfers.  Once in fast local memory, these data contexts can be efficiently reorganized if necessary.
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We assume that global barriers (Amdahl’s Law) can be avoided by providing greater system
resources and/or by minor modifications of the numerical algorithm.  Examples of this principle abound.
For example, a program may require all processing to stop so that an image of the problem can be written
to a restart file on disk.  However, if additional system memory is provided, this restart dump can be
written asynchronously without impeding the program flow.  Another program might require that a global
reduction operation be performed after a time step is completed in order to determine the value of the next
time step.  However, if enough memory is provided to store the previous problem state, we may guess the
time step value (the minimum of the previous 25 time steps might be a good guess) and proceed specula-
tively.  In the rare event that we guess badly, the saved system state will permit us to recover.  As a final
example, we may be performing an implicit calculation that appears to require global information to be
assembled in order to update the value of a variable at a single spatial location.  By revising the numerical
algorithm slightly, we could require up-to-date information only for the local region and use information
from the previous time step or iteration for the more distant data.  Once again, this would require a
commitment of additional system memory to the job.

Feasibility Requirements:

There are bandwidth requirements for the cluster network, but essentially no meaningful latency
requirements.  The bandwidth requirements are determined by the demand that any computing resource
should be able to execute any task, regardless of the location of its data context.  Data prefetching and
asynchronous write back are absolutely essential.  The task manager should have limited intelligence to
avoid stupid data movement.  It should dynamically reorder the task list, permuting elements that are
equally or nearly equally qualified candidates for the next task to be launched, taking data location over
the network into account.  Finally, local memory for various computing resources must be sufficient to
accommodate data contexts offering sufficient data reuse, but this is not a new requirement.

Relation to Other Work:

Many investigators have been concerned in recent years with enabling shared memory programs to
execute on cluster systems.  Some of the early work in this area led directly to the development of
distributed shared memory (DSM) machines, particularly the work of the Stanford team led by John
Hennessy (cf. Kuskin et al. 1994).  More recent contributions (see reference list) have focused on
software systems that create from a cluster of machines the practical effect, rather than simply a research
prototype, of a DSM machine.  Much of this work, although not all, has focused on clusters of single-
processor machines and therefore features only a single level of the two-level shared memory discussed in
the present work.  Also, much of the work has involved very fine granularity of software shared memory
access, often based on machine memory pages.  In this respect this work stands in contrast to the
approach advocated here.  Some of the recent work on out-of-core computation algorithms, particularly
that of Salmon and Warren (1997) and Nieplocha and Foster (1996) involves concepts relevant to the
work presented here.  A feature that this out-of-core work, particularly that of Salmon and Warren, shares
with our own is the emphasis on restructuring the numerical algorithm to function well in the new mode.
The work presented here is based on ideas set out in Woodward (1996).  Continually updated lists of
references to work on SMP cluster computing can be found on the “clumps home page,” at
http://now.cs.berkeley.edu/clumps, and through links maintained on that page.
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Scientific Results:

For over a decade, we have been pursuing every available opportunity to use powerful new comput-
ing hardware in order to enhance the faithfulness to nature’s complexity of our simulations of turbulent
fluid flow.  We report below some of the new 3-D simulations of compressible turbulent fluid flow that
we have performed with our PPM gas dynamics code on SMP and DSM cluster platforms.  These include
simulations of convection in the envelopes of pulsating and rapidly rotating model stars, of chunks of
homogeneous, compressible turbulence, and of the unstable acceleration of fluid interfaces by shocks.
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Figure 2A.   A perspective volume rendering of the
distribution of entropy near a small section of the
unstable interface near the end of the sPPM simula-
tion of the Richtmyer-Meshkov instability.  The
entropy of the shocked denser gas is shown as white,
while that of the shocked, more diffuse gas is trans-
parent.  The region of turbulent mixing is in the green
region of this “forest of broccoli.”
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ounts, this code’s performance on the 5856-processo

The Richtmyer-Meshkov instability results wh
Figure 2B.  A perspective volume rendering of the
same region near the unstable interface as is shown in
the figure at the left.  Here the magnitude of the
vorticity is visualized.  This twisted collection of
vortex tubes is characteristic of fully developed turbu-
lence, a conclusion that is supported by the velocity
power spectra shown in Figure 3.  Note the absence of
strong vorticity along the top of the “mushroom cap.”
e New SMP Cluster Architecture
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ng the last two years finally to resolve a reasonable
resting larger flow.  The largest such calculation that
r-Meshkov instability of a shock-accelerated fluid
ore with the simplified version, sPPM, of our PPM
cause this sPPM code version was used as the ASCI
enchmark, we had the expert assistance of Steve

details of communication between the two (of three)
M SP system for this special code implementation.

group to produce outstanding performance for this
y counting the floating point operations that can be
ment) with the reciprocal and square root functions,
 be in excess of 1 Tflop/s.  Regardless of how one
r IBM system is exceptional.

en a shock accelerates an interface separating two
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Figure 2C.   A perspective volume rendering of the
distribution of entropy near a thin slice of a small
section of the unstable interface near the end of the
sPPM simulation of the Richtmyer-Meshkov instab-
ility.  The entropy of the shocked denser gas is shown
as white, while that of the shocked, more diffuse gas is
transparent.  The region of turbulent mixing is in the
green region of this “forest of broccoli.”
Harnessing the Power of th
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luids of different densities.  Because the shock trave
n the interface location cause sections of the shock 
he oblique sections of the shock which therefore d
as behind it which are focused on the regions behind
otions increase the pressure in these regions, and he
s a result, the shock straightens out, but it leaves 

ongitudinal ones where the denser material squirts
otions are not further accelerated, but they are not 

eads to the development of turbulence and (in the 
luids on small scales.

We initialized our simulation of this instability
he less dense gas (γ = 1.3) a perturbed interface wit
erturbation of the interface was  0.01 [–cos(2πx)cos
luid interface as a smooth transition spread over a
educed the amplitude of the high frequency signals t
PPM method of capturing and advecting fluid interfa
rid cells and resists, through its inherent numerica
erturbations.  By setting up the initial interface so sm
t would contain only short wavelength perturbations
hat none of these perturbations resulting only from t
istaken by the scheme for real signals.  Nevertheles

e too careful in interpreting the results.  We are gui
Figure 2D.  A perspective volume rendering of the
same region near the unstable interface as is shown in
the figure at the left.  Here the magnitude of the
vorticity is visualized.  This twisted collection of
vortex tubes is characteristic of fully developed turbu-
lence, a conclusion that is supported by the velocity
power spectra shown in Figure 3.  Note the absence of
strong vorticity along the top of the “mushroom cap.”
e New SMP Cluster Architecture
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ls more slowly in the denser medium, perturbations
to lag slightly behind the shock’s average position.
evelop set up transverse motions in the compressed
 the sections of the shock which lag.  These focused
nce the shock strength and propagation speed there.
behind transverse motions which are converted to
 out into the less dense one.  These longitudinal
damped either.  Shear at the interface subsequently
absence of surface tension) to a mixing of the two

 with a planar Mach 1.5 shock approaching through
h a gas 4.88 times denser (also with γ = 1.3).  The
(2πy) + sin(10πx)sin(10πy)].  We initialized the
 width of 5 grid cells.  This initialization greatly
hat are unavoidable in any grid-based method.  The
ces forces smearing of these transitions over about 2
l diffusion, development of very short wavelength
oothly, we assured that after its shock compression

 that the sPPM scheme was designed to handle, and
he discretization of the problem on a grid would be
s, the problem is physically unstable, so one cannot
ded in our interpretation by a series of coarser grid
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simulations of the same problem and by the
data shown below.  The main point we would
like to stress here is that on this grid of 8
billion cells, we are finally at a point where
we are able to resolve in this single
computation both the primary, long wave-
length behavior of the Richtmyer-Meshkov
instability and also the secondary, short
wavelength behavior of the turbulence that
grows out of the shear which this instability
produces.

This sPPM simulation was carried out
on a brand new computing system, which
therefore did not possess all its planned
support systems of disks, archival storage,
and visualization hardware.  As a result, we
were able to archive only 10 full-information

snap shot files, each compressed by a factor of 2 to represent each number in only 16 bits.  Each of these
files was 84 GB in size, so this is still nearly a TB of information.  However, based upon preliminary runs
of this same problem at lower grid resolution, we determined a single variable, related to the entropy of
the gas, and a scaling of this variable to 255 intensity levels, that we wished to save in more complete
form.  Each snap shot for this single entropy variable was only 8 GB, which made it possible to archive

Figure 3.   Longitudinal velocity power spectra.
Figure 4A,B.  Solenoidal (top) and compressional (bottom) velocity power spectra of decaying turbulence.
Harnessing the Power of the New SMP Cluster Architecture
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274 such snap shots during the course of the simulation.  We may thus ask any question about the
dynamics of the gas entropy in this run and have a good hope of an answer, but questions about other
fluid dynamic state variables must be restricted to their behavior as shown only in the 10 larger snap shots
which we were able to preserve.  Such constraints are typical of computations carried out on first-of-a-
kind computing systems like this one.

In Figures 2A&C and 2B&D above, the entropy and the magnitude of vorticity are visualized in the
same small region near the center of the unstable interface near the end of the simulation.  From these
figures we can see that this simulation has indeed captured both the macroscopic and the microscopic
scales of the Richtmyer-Meshkov instability and its secondary Kelvin-Helmholtz instabilities.  We can
make this statement quantitative by looking at the velocity power spectrum within a plane slicing through
the unstable layer.  Such a power spectrum is shown in Figure 3.  Actually, in this figure three such
spectra are compared.  The three spectra come from simulations on progressively finer grids of 3843,
10243, and 20482×1920 cells.  The low frequency parts of these spectra reflect the initial perturbations and
the harmonic modes that their nonlinear interactions have produced.  To the right of the higher frequency
initial perturbation, a short section of a turbulent inertial range, with a Kolmogorov power-law slope of
Figure 5.   The distribution of the magnitude of vorticity is visualized in this volume rendering of a region of
the billion-cell simulation of homogeneous, Mach ½ turbulence.  Near the center of the figure, a group of
thin vortex tubes are spiraling around each other as a whole section of a vortex sheet rolls up.  At the left, a
series of roughly parallel vortex tubes is intensifying out of another vortex sheet.  This visualization captures
the developing turbulent flow in the midst of its transition from a state dominated by vortex sheets to one in
which such sheets can no longer be identified within the dense tangle of spaghetti-like vortex tubes.
Harnessing the Power of the New SMP Cluster Architecture
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the dissipation range (for wavelengths of about 8 gri
homogeneous turbulence (see below) indicates that th
motions by the numerical viscosity of the sPPM sche
the short section of k-1 slope.  Therefore, presumably
effects of the interactions of the original perturbation 
scales of the turbulence that the instability has genera

Concentrating all the DSM Cluster Computational Po

Using the Silicon Graphics DSM cluster at Los 
able to simulate a small chunk of homogeneous, com
code running with periodic boundary conditions on 
developed turbulent flow containing a Kolmogorov i
Figure 6.  Volume renderings of the vorticity
magnitude (top left), divergence of velocity (top
right), and entropy (left) at a slightly earlier time
than shown in Figure 5 for the billion-cell PPM
simulation of homogeneous, compressible turbu-
lence.  Each variable gives an entirely different view
of this complex flow.
e New SMP Cluster Architecture

10/99

k-5/3 can be identified.  The coarsest grid does not
reveal such an inertial range, but both of the finer
grids show this behavior.  Still further toward high
frequencies, in the near dissipation regime, the
power spectra flatten somewhat, developing
power-law behavior more like k-1, characteristic of
the Fourier transform of very long vortex tubes (as
are visible in the image of the vorticity).  On the
finest grid, we have an inertial range of the
turbulence of about a factor of 3 in extent, with the
spectrum flattening toward k-1 in the near
dissipation range and then steepening greatly in

d cells or less).  Our experience with simulations of
e indirect effects of the dissipation of the turbulent

me extend no further toward long wavelengths than
, this simulation properly incorporates the physical
scales and their first few harmonics with the smaller
ted.

wer on a Single Chunk of Turbulence:

Alamos in the spring and summer of 1997, we were
pressible turbulence.  With the PPM gas dynamics
a uniform grid of 10243 cells, we achieved a fully
nertial range of about a factor of 8 in wavenumber.
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Figure 7A,B.  The distribution of the vertical velocity component is shown in these two volume renderings from a
PPM simulation of turbulent compressible convection in a rapidly rotating model star.  This calculation was
performed on a uniform Cartesian grid of 5443 cells.  The yellow regions of the flow are moving upward while
the downflows are represented as red and purple.  The rotation axis is represented as a white line.  The outer
view, at the left, shows the cellular convection pattern near the surface of the star.  The oblateness of this very
rapidly rotating object is more apparent in the view at the right from the equatorial plane.  In this volume
rendering, the near half of the star has been cut away, and the central half by radius is made transparent.  This
central region of the star is convectively stable.  The eye can detect in the right-hand image a tendency for the
lanes of upward- and downward-flowing gas to line up roughly along longitudinal lines.  This tendency to form
banana-shaped convection cells is countered by the differential rotation of the star, which has in turn resulted
from the convective transport of angular momentum.  An animation of the convection patterns as viewed from
the stellar interior reveals a continual forming, tearing, and reforming of these banana structures.
Harnessing the Power of the New SMP Cluster Architecture
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his flow was initiated with a statistical sample of long wavelength velocity disturbances centered fairly
arrowly on a wavelength of half the periodic scale.  The density and pressure were constant in the initial
tate, and the amplitude of the initial velocity disturbances gave an rms velocity perturbation of half the
ound speed.  The velocity power spectrum is shown in figure 4A at a point during the decay of this flow
hen the turbulence has become fully established.  This spectrum is compared in the figure with those of

dentical runs with the PPM code on grids of progressively coarser resolution:  5123, 2563, 1283, and 643.
he velocity power spectra are shown in this figure for both the incompressible (solenoidal) and
ompressible components of the velocity field (upper and lower panels, respectively).

The convergence of the power spectra is clear.  Each successively finer grid leaves the long
avelength behavior invariant while adding another section to the spectrum at high wavenumbers.  At the

ight-hand end of each power spectrum is of course a short region of strong damping due to the numerical
issipation of the PPM Euler scheme.   For the solenoidal power spectra, this picture is complicated by
he presence in the near dissipation range of a section of flatter slope, about k-1, extending over roughly a
actor of 4 in wavenumber.  This behavior was noted first in our numerical simulations several years ago
11,7], and it has been confirmed in other simulations as well as in experiments since then.  This behavior
an also bee seen in the spectra in Figure 3.  Interestingly, it can also be seen in the power spectra in
igure 4B, which come from identical PPM runs in which the Navier-Stokes dissipation terms have been

ncluded [12].  A Prandtl number of unity was chosen, and the Navier-Stokes viscosity coefficient was
hosen by the demand that when these coefficients remain fixed and the computational grid is refined by
 factor of 2 in each dimension, the power spectra remain unchanged.  This demand of convergence of the
ower spectra can of course not be applied in the Euler case, since a grid refinement reduces the effective
iscosity of the flow by a factor of 8 (for PPM).  The Navier-Stokes runs were carried only to a grid of
123, at which resolution there is still no Kolmogorov inertial range at all for this flow.  Nevertheless, the
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trend of these curves — for grids of 643, 1283, 2563, and 5123 — indicates that with a grid of about 40963

we would see such a region of the spectrum with about the same extent in wavenumber as the Euler
approach gives us with only 10243 cells.

The billion-cell Mach ½ turbulence calculation gives an enchanting, detailed view of the develop-
ment of a turbulent flow  (see it on-line at  http://www.lcse.umn.edu/Movies or at [31]).  The instability of
originally smooth vortex sheets to form systems of vortex tubes and the subsequent braiding of these
tubes about each other is clearly seen.  Figure 5, above, gives a glimpse of this fascinating process when it
is about half-way along, and Figure 6 shows volume renderings of three variables, the vorticity
magnitude, the divergence of the velocity, and the entropy, a bit earlier in the simulation.

Simulating Turbulence Driven by Convection, which in turn Interacts with Stellar Pulsation:

In a number of PPM simulations using NCSA’s Silicon Graphics DSM cluster, we have explored
the interaction of turbulence with thermal convection, and of this turbulent convection in turn with either
rotation or pulsation.  This work began with our participation in an NSF-funded Grand Challenge team
project, together with the team of Juri Toomre at the University of Colorado, Boulder.  The computational
power of the DSM cluster made it possible to extend the grand challenge work on small 3-D blocks
representative of the solar convection zone near its surface to include the entire model star.  Our first
simulations, begun in the fall of 1996, used a model star which was chosen to explore the interaction of
convection with rotation (see Figure 7).  This calculation incorporated a treatment of the free surface of

Figure 7A,B.   Two perspective volume renderings of a PPM simulation of the convective envelope of a
model giant star with 3 times the mass and 4500 times the luminosity of the sun.  80% of the mass of this
giant star is in the extended convective envelope shown here, and 20% is in a dense, hot stellar core which is
stable to convection.  For such a star, the envelope radius is comparable to the orbit of the earth, while the
core radius is comparable to the radius of the earth.  Here the core is artificially enlarged, while still very
small, so that its radius of a tenth that of the envelope can be resolved on the computational grid of 5123

uniform cubical cells.  Temperature fluctuations relative to average values on isopressure surfaces are
shown, with red and yellow depicting warm and hot temperatures and blue and aqua representing cool and
cold temperatures.  At the left, the envelope is made relatively opaque, so that the surface pattern of
convection cells is visualized.  At the right, the gas has been made relatively transparent, so that the interior
strong dipolar flow pattern is revealed.  Clearly, the left half of this stellar envelope is cooler than the right
half.  The heated gas which has flown over and around the core is evident as the yellow stream at the right.
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the star which used a multifluid algorithm based on the SLIC algorithm of Noh and Woodward [13], but
with gravity serving to make the interface between the stellar gas and the second “fluid” (vacuum) stable.
The escape of heat through this surface was treated rather crudely, however, with the time-averaged
surface heat flux forced to match the constant rate at which heat was introduced into the stable central
region of the model star.

In the fall of 1997, we used the same multifluid, 3-D Cartesian PPM code at NCSA to simulate
pulsating stars.  In our most recent simulation, we chose a luminous model star to drive very rapid,
vigorous convection.  In this case, we set up the unperturbed stellar model without rotation but with a
very deep convection zone as is found in giant stars.  In order to resolve it on the computational mesh, we
enlarged the convectively stable, hot stellar core to about 10% of the stellar radius.  In a typical giant star,
the hot, stable core would have a radius comparable to that of the earth while the convective envelope
around it would have a radius comparable to that of the orbit of the earth about the sun.  We artificially
reduced this tremendous dynamic range in our simulation, keeping the stellar core small but still
resolvable.  In Figure 7, above, we see two volume renderings of our simulated giant star convective
envelope.  At the left, we have made the envelope relatively opaque, so that we see the surface features,
while on the right we have made the envelope sufficiently transparent that we may see right through it to
the hot stellar core within.  In both renderings, we show the temperature fluctuations relative to average
temperatures on each isopressure surface.  Red and yellow represent warm and hot temperatures, while

blue and aqua represent cool and cold ones.

Aside from the pulsation of this model
giant star envelope over a range of about
±10%  in radius, the biggest surprise of this
calculation, as with our first such simulation in
1997, was the prominence of global modes of
convection.  Treatments of convection for
evolution calculations for stars of this type
assume that the convection can be
characterized by mixing length models which
involve only local parameters.  However, this
simulation reveals a propensity for global
modes of convection.  In fact, animated
sequences of images like these reveal a
general dipolar flow pattern, with relatively
cool gas descending toward the core from the
left in Figure 7B, becoming heated while
passing over the core at about a fifth of the
local sound speed, and rising as relatively
warm gas to the right in the figure [34].
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Figure 8.  The radial velocity power spectrum from the middle of
the convective envelope of our model giant star is here analyzed
in terms of spherical harmonic modes.  Note the dominance of
the dipole mode and the Kolmogorov power-law behavior at
higher wavenumbers (indicated by the straight line).  The slight
flattening of the spectrum toward the highest wavenumbers, just
before the dissipation range, is a feature we have seen in every
compressible, turbulent flow we have simulated.
Harnessing the Power of the New SMP Cluster Architecture
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The deep convection in the model giant
tar envelope that we have been discussing has provided us with a fully developed thermal convection
low with 5 pressure scale heights over which the special conditions of either the upper or the lower
oundaries exert no major effects.  In this flow the periodic boundary conditions in the “horizontal”
irections are not at all artificial, but instead simply express the overall spherical geometry of the
roblem.  Here we have, as in the Richtmyer-Meshkov problem, turbulence driven by a real physical
rocess which is itself simulated in complete detail within the calculation.  In contrast to the Richtmyer-
eshkov example, however, this thermal convection flow is statistically steady, except of course for the

eriodic radial pulsation of the envelope as a whole.  This PPM simulation on a 5123 grid was carried out
ver about 20 pulsation periods, so that the flow has had a good deal of time to relax.  Velocity power
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spectra of the flow near the middle of the envelope (middle values of the radius) are shown in Figure 8.
Once again, the longest wavelength modes are characteristic of the driving physical process and there is a
turbulent Kolmogorov inertial range, in this case rather short.  Again there is a flattening of the power
spectra in the near dissipation range followed by a dramatic steepening as the turbulence is dissipated at
the highest wavenumbers.  In this simulation, not only is the nonlinear interaction of the small scale
turbulence with the convection flow treated in detail, but the nonlinear interaction of the dipolar
convection flow with the global radial pulsation is accounted for as well.  We are beginning a new series
of such giant star simulations incorporating more realistic models of the gas equation of state, including
gas ionization effects, and improving our treatment of the escape of heat from the stellar surface.

Conclusions:

The new generation of powerful DSM and SMP cluster computers enables simulations of fluid dynamics
at sufficient resolution to compute the complex nonlinear interactions of small-scale turbulent motions
within a large-scale driving flow.  With a new programming model of hierarchical shared memory multi-
tasking, it is possible to exploit these new systems without disrupting the flow of small and medium-sized
jobs that makes their existence possible.
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